2,051 research outputs found

    Combining the conservation of biodiversity with the provision of ecosystem services in urban green infrastructure planning. Critical features arising from a case study in the metropolitan area of Rome

    Get PDF
    A large number of green infrastructure (GI) projects have recently been proposed, planned and implemented in European cities following the adoption of the GI strategy by the EU Commission in 2013. Although this policy tool is closely related to biodiversity conservation targets, some doubts have arisen as regards the ability of current urban GI to provide beneficial effects not only for human societies but also for the ecological systems that host them. The aim of this work is to review the features that should be considered critical when searching for solutions that simultaneously support biodiversity and guarantee the provision of ecosystem services (ES) in urban areas. Starting from a case study in the metropolitan area of Rome, we highlight the role of urban trees and forests as proxies for overall biodiversity and as main ecosystem service providers. We look beyond the individual functional features of plant species and vegetation communities to promote the biogeographic representativity, ecological coherence and landscape connectivity of new or restored GI elements

    Human brain distinctiveness based on EEG spectral coherence connectivity

    Full text link
    The use of EEG biometrics, for the purpose of automatic people recognition, has received increasing attention in the recent years. Most of current analysis rely on the extraction of features characterizing the activity of single brain regions, like power-spectrum estimates, thus neglecting possible temporal dependencies between the generated EEG signals. However, important physiological information can be extracted from the way different brain regions are functionally coupled. In this study, we propose a novel approach that fuses spectral coherencebased connectivity between different brain regions as a possibly viable biometric feature. The proposed approach is tested on a large dataset of subjects (N=108) during eyes-closed (EC) and eyes-open (EO) resting state conditions. The obtained recognition performances show that using brain connectivity leads to higher distinctiveness with respect to power-spectrum measurements, in both the experimental conditions. Notably, a 100% recognition accuracy is obtained in EC and EO when integrating functional connectivity between regions in the frontal lobe, while a lower 97.41% is obtained in EC (96.26% in EO) when fusing power spectrum information from centro-parietal regions. Taken together, these results suggest that functional connectivity patterns represent effective features for improving EEG-based biometric systems.Comment: Key words: EEG, Resting state, Biometrics, Spectral coherence, Match score fusio

    Ecohydrological Modeling in Agroecosystems: Examples and Challenges

    Get PDF
    Human societies are increasingly altering the water and biogeochemical cycles to both improve ecosystem productivity and reduce risks associated with the unpredictable variability of climatic drivers. These alterations, however, often cause large negative environmental consequences, raising the question as to how societies can ensure a sustainable use of natural resources for the future. Here we discuss how ecohydrological modeling may address these broad questions with special attention to agroecosystems. The challenges related to modeling the two‐way interaction between society and environment are illustrated by means of a dynamical model in which soil and water quality supports the growth of human society but is also degraded by excessive pressure, leading to critical transitions and sustained societal growth‐collapse cycles. We then focus on the coupled dynamics of soil water and solutes (nutrients or contaminants), emphasizing the modeling challenges, presented by the strong nonlinearities in the soil and plant system and the unpredictable hydroclimatic forcing, that need to be overcome to quantitatively analyze problems of soil water sustainability in both natural and agricultural ecosystems. We discuss applications of this framework to problems of irrigation, soil salinization, and fertilization and emphasize how optimal solutions for large‐scale, long‐term planning of soil and water resources in agroecosystems under uncertainty could be provided by methods from stochastic control, informed by physically and mathematically sound descriptions of ecohydrological and biogeochemical interactions

    Baseline pathological data of the wedge clam Donax trunculus from the Tyrrhenian Sea (Mediterranean Basin)

    Get PDF
    In recent years, a collapse in Donax trunculus fishing yields has occurred in the Tyrrhenian Sea (Mediterranean Basin). There is little information available on the impact disease may have had on D. trunculus populations. For the first time, a pathological survey was performed on the natural beds of the bivalve on the Campania and Lazio coasts, western Italy. Detected pathogens and related diseases were analysed, and their prevalence and mean intensity values were calculated. Viral particles, Chlamydia-like organisms, ciliates, coccidians, microcells and trematodes were observed. An unknown ciliate was linked to severe inflammatory and necrotic lesions in the digestive gland. Metacercariae of the trematode Postmonorchis sp. were also strongly represented in almost all samples, reaching high levels of infection; however, none of the pathogens described required the World Organisation for Animal Health to be notified. Initial results indicated that further surveys related to environmental data are necessary in order to assess the relevance of these early observations in managing the declining D. trunculus population in the Tyrrhenian Sea.info:eu-repo/semantics/acceptedVersio

    Biochemical and molecular characterization of olive β-glucosidase in seven olive varieties during the ripening process: the role of β-glucosidase in determining the phenolic content of virgin olive oil.

    Get PDF
    Virgin olive oil (VOO) is one of the essential components of the Mediterranean diet, which includes a series of cultural habits, especially alimentary, shared to a greater or lesser extent, by all countries lapped by Mediterranean Sea. VOO is enriched with bioactive compounds which are related to its unique organoleptic characteristics, and also to its antioxidant properties, which have been associated to with the reduction of risk to suffer cardiovascular diseases and to a protective effect against cancer. The most important bioactive components in VOO are phenolics compounds [2].The phenolic composition of VOO is closely related to the content of phenolic glycosides initially present in the olive tissue. In parallel, some studies indicate that there is a positive correlation between the activity levels of β-glucosidase in the olive fruit and the final content of phenolic compounds in VOO. This enzyme plays a key role hydrolyzing phenolic profile of VOO. In consequence, its biochemical and molecular characterization is of great interest from a biotechnological point of view [1, 2].In this study, seven olive varieties (Abou-Kanani, Dokkar, Klon-14, Menya, Picual, Piñonera y Shengeh) with different phenolic contents have been selected in the World Olive Germplasm Bank. The phenolic profiles of fruits harvested at different ripening stages and their oils have been analyzed by HPLC and at the same time β-glucosidase activity has been measured in olive fruits at different ripening stages. The methods for β-glucosidase extraction and activity assessment have been optimized. Spectrophotometric activity assays have been carried out with the synthetic substrate p-nitrophenyl galactoside (p-NPG) using a calculated molar extinction coefficient (ε=552,8 M-1cm-1) for the p-nitrophenyl liberated in the reaction medium. The results obtained show that olive varieties with the highest content of phenolic glycosides in the fruit such as Piñonera, Dokkar or Menya, also have the largest β-glucosidase activity levels, which usually decrease ripening process. These results will be completed with the pertinent studies of gene expression [3]

    Difficult Biliary Stones: A Comprehensive Review of New and Old Lithotripsy Techniques

    Get PDF
    Biliary stones represent the most common indication for therapeutic endoscopic retrograde cholangiopancreatography. Many cases are successfully managed with biliary sphincterotomy and stone extraction with balloon or basket catheters. However, more complex conditions secondary to the specific features of stones, the biliary tract, or patient's needs could make the stone extraction with the standard techniques difficult. Traditionally, mechanical lithotripsy with baskets has been reported as a safe and effective technique to achieve stone clearance. More recently, the increasing use of endoscopic papillary large balloon dilation and the diffusion of single-operator cholangioscopy with laser or electrohydraulic lithotripsy have brought new, safe, and effective therapeutic possibilities to the management of such challenging cases. We here summarize the available evidence about the endoscopic management of difficult common bile duct stones and discuss current indications of different lithotripsy techniques

    Photosynthetic capacity, canopy size and rooting depth mediate response to heat and water stress of annual and perennial grain crops

    Get PDF
    Perennial grain crops are promoted as an alternative to annual staple crops to reduce negative environmental effects of agriculture and support a variety of ecosystem services. While perennial grains have undergone extensive testing, their vulnerability to projected future warmer and drier growing conditions remains unclear. To fill this gap, we compared leaf temperature and gas exchange rates of annual wheat and different perennial wheat ideotypes using a multi-layer process-based eco-hydrological model. The model combines leaf-level gas exchange, optimality principles regulating stomatal conductance, energy balance, radiative and momentum transfer inside the canopy, as well as soil water balance. Wheat ideotypes are parameterized based on an extensive review of field data. When compared with annual wheat, perennial wheat ideotypes with high leaf area index had between 12% and 39% higher canopy transpiration and net CO2 assimilation, depending on their photosynthetic capacity and water status. Differences in leaf temperature and instantaneous water use efficiency between annual wheat and the perennial ideotypes were moderate (-0.5 to +0.4 & DEG;C and -6 to +2%, respectively). Low soil water availability did not alter the ranking of ideotypes in terms of canopy temperature and gas exchanges. During a prolonged dry down, cumulated water use was higher and canopy temperature lower in perennial than annual ideotypes, thanks to the deeper roots, whereas cumulated net CO2 fixation depended on the specific traits and air temperature. Leaf-specific and whole plant characteristics interacted with hydro-meteorological conditions in defining the perennial's vulnerability envelopes to potential heat and water stress. These findings underline the importance of plant characteristics, and particularly leaf area and rooting depth, in defining the suitability of perennial grain crops under future climates
    corecore